一、重金屬的危害特性
從環(huán)境污染方面所說的重金屬,實際上主要是指汞、鎘、鉛、鉻、砷等金屬或類金屬,也指具有一定毒性的一般重金屬,如銅、鋅、鎳、鈷、錫等。我們從自然性、毒性、活性和持久性、生物可分解性、生物累積性,對生物體作用的加和性等幾個方面對重金屬的危害稍作論述。
(一)自然性:
長期生活在自然環(huán)境中的人類,對于自然物質(zhì)有較強的適應能力。有人分析了人體中60多種常見元素的分布規(guī)律,發(fā)現(xiàn)其中絕大多數(shù)元素在人體血液中的百分含量與它們在地殼中的百分含量極為相似。但是,人類對人工合成的化學物質(zhì),其耐受力則要小得多。所以區(qū)別污染物的自然或人工屬性,有助于估計它們對人類的危害程度。鉛、鎘、汞、砷等重金屬,是由于工業(yè)活動的發(fā)展,引起在人類周圍環(huán)境中的富集,通過大氣、水、食品等進入人體,在人體某些器官內(nèi)積累,造成慢性中毒,危害人體健康。
(二)毒性:
決定污染物毒性強弱的主要因素是其物質(zhì)性質(zhì)、含量和存在形態(tài)。例如鉻有二價、三價和六價三種形式,其中六價鉻的毒性很強,而三價鉻是人體新陳代謝的重要元素之一。在天然水體中一般重金屬產(chǎn)生毒性的范圍大約在1~10mg/L之間,而汞,鎘等產(chǎn)生毒性的范圍在0.01~0.001mg/L之間。
(三)時空分布性:
污染物進入環(huán)境后,隨著水和空氣的流動,被稀釋擴散,可能造成點源到面源更大范圍的污染,而且在不同空間的位置上,污染物的濃度和強度分布隨著時間的變化而不同。
(四)活性和持久性:
活性和持久性表明污染物在環(huán)境中的穩(wěn)定程度。活性高的污染物質(zhì),在環(huán)境中或在處理過程中易發(fā)生化學反應,毒性降低,但也可能生成比原來毒性更強的污染物,構(gòu)成二次污染。如汞可轉(zhuǎn)化成甲基汞,毒性很強。與活性相反,持久性則表示有些污染物質(zhì)能長期地保持其危害性,如重金屬鉛、鎘等都具有毒性且在自然界難以降解,并可產(chǎn)生生物蓄積,長期威脅人類的健康和生存。
(五)生物可分解性:
有些污染物能被生物所吸收、利用并分解,zui后生成無害的穩(wěn)定物質(zhì)。大多數(shù)有機物都有被生物分解的可能性,而大多數(shù)重金屬都不易被生物分解,因此重金屬污染一但發(fā)生,治理更難,危害更大。
(六)生物累積性:
生物累積性包括兩個方面:一是污染物在環(huán)境中通過食物鏈和化學物理作用而累積。二是污染物在人體某些器官組織中由于長期攝入的累積。如鎘可在人體的肝、腎等器官組織中蓄積,造成各器官組織的損傷。又如1953年至1961年,發(fā)生在日本的水俁病事件,無機汞在海水中轉(zhuǎn)化成甲基汞,被魚類、貝類攝入累積,經(jīng)過食物鏈的生物放大作用,當?shù)鼐用袷秤煤笾卸尽?/p>
(七)對生物體作用的加和性:
多種污染物質(zhì)同時存在,對生物體相互作用。污染物對生物體的作用加和性有兩類:一類是協(xié)同作用,混合污染物使其對環(huán)境的危害比污染物質(zhì)的簡單相加更為嚴重;另一類是拮抗作用,污染物共存時使危害互相削弱。
二、重金屬的定量檢測技術(shù)
通常認可的重金屬分析方法有:紫外可分光光度法(UV)、原子吸收法(AAS)、原子熒光法(AFS)、電感耦合等離子體法(ICP)、X熒光光譜(XRF)、電感耦合等離子質(zhì)譜法(ICP-MS)。日本和歐盟國家有的采用電感耦合等離子質(zhì)譜法(ICP-MS)分析,但對國內(nèi)用戶而言,儀器成本高。陽極溶出法,檢測速度快,數(shù)值準確,可用于現(xiàn)場等環(huán)境應急檢測。X熒光光譜(XRF)分析,優(yōu)點是無損檢測,可直接分析成品。
(一)原子吸收光譜法(AAS)
原子吸收光譜法是20世紀50年代創(chuàng)立的一種新型儀器分析方法,它與主要用于無機元素定性分析的原子發(fā)射光譜法相輔相成,已成為對無機化合物進行元素定量分析的主要手段。
原子吸收分析過程如下:1、將樣品制成溶液(空白);2、制備一系列已知濃度的分析元素的校正溶液(標樣);3、依次測出空白及標樣的相應值;4、依據(jù)上述相應值繪出校正曲線;5、測出未知樣品的相應值;6、依據(jù)校正曲線及未知樣品的相應值得出樣品的濃度值。
現(xiàn)在由于計算機技術(shù)、化學計量學的發(fā)展和多種新型元器件的出現(xiàn),使原子吸收光譜儀的精密度、準確度和自動化程度大大提高。用微處理機控制的原子吸收光譜儀,簡化了操作程序,節(jié)約了分析時間?,F(xiàn)在已研制出氣相色譜—原子吸收光譜(GC-AAS)的聯(lián)用儀器,進一步拓展了原子吸收光譜法的應用領(lǐng)域。
(二)紫外可見分光光度法(UV)
其檢測原理是:重金屬與顯色劑—通常為有機化合物,可于重金屬發(fā)生絡合反應,生成有色分子團,溶液顏色深淺與濃度成正比。在特定波長下,比色檢測。
分光光度分析有兩種,一種是利用物質(zhì)本身對紫外及可見光的吸收進行測定;另一種是生成有色化合物,即“顯色”,然后測定。雖然不少無機離子在紫外和可見光區(qū)有吸收,但因一般強度較弱,所以直接用于定量分析的較少。加入顯色劑使待測物質(zhì)轉(zhuǎn)化為在紫外和可見光區(qū)有吸收的化合物來進行光度測定,這是目前應用zui廣泛的測試手段。顯色劑分為無機顯色劑和有機顯色劑,而以有機顯色劑使用較多。大多當數(shù)有機顯色劑本身為有色化合物,與金屬離子反應生成的化合物一般是穩(wěn)定的螯合物。顯色反應的選擇性和靈敏度都較高。有些有色螯合物易溶于有機溶劑,可進行萃取浸提后比色檢測。近年來形成多元配合物的顯色體系受到關(guān)注。多元配合物的指三個或三個以上組分形成的配合物。利用多元配合物的形成可提高分光光度測定的靈敏度,改善分析特性。顯色劑在前處理萃取和檢測比色方面的選擇和使用是近年來分光光度法的重要研究課題。
(三)原子熒光法(AFS)
原子熒光光譜法是通過測量待測元素的原子蒸氣在特定頻率輻射能激以下所產(chǎn)生的熒光發(fā)射強度,以此來測定待測元素含量的方法。
原子熒光光譜法雖是一種發(fā)射光譜法,但它和原子吸收光譜法密切相關(guān),兼有原子發(fā)射和原子吸收兩種分析方法的優(yōu)點,又克服了兩種方法的不足。原子熒光光譜具有發(fā)射譜線簡單,靈敏度高于原子吸收光譜法,線性范圍較寬干擾少的特點,能夠進行多元素同時測定。原子熒光光譜儀可用于分析汞、砷、銻、鉍、硒、碲、鉛、錫、鍺、鎘鋅等11種元素?,F(xiàn)已廣泛用環(huán)境監(jiān)測、醫(yī)藥、地質(zhì)、農(nóng)業(yè)、飲用水等領(lǐng)域。在國標中,食品中砷、汞等元素的測定標準中已將原子熒光光譜法定為*法。
氣態(tài)自由原子吸收特征波長輻射后,原子的外層電子從基態(tài)或低能態(tài)會躍遷到高能態(tài),同時發(fā)射出與原激發(fā)波長相同或不同的能量輻射,即原子熒光。原子熒光的發(fā)射強度If與原子化器中單位體積中該元素的基態(tài)原子數(shù)N成正比。當原子化效率和熒光量子效率固定時,原子熒光強度與試樣濃度成正比。
現(xiàn)已研制出可對多元素同時測定的原子熒光光譜儀,它以多個高強度空心陰極燈為光源,以具有很高溫度的電感耦合等離子體(ICP)作為原子化器,可使多種元素同時實現(xiàn)原子化。多元素分析系統(tǒng)以ICP原子化器為中心,在周圍安裝多個檢測單元,與空心陰極燈一一成直角對應,產(chǎn)生的熒光用光電倍增管檢測。光電轉(zhuǎn)換后的電信號經(jīng)放大后,由計算機處理就獲得各元素分析結(jié)果。
(四)電化學法—陽極溶出伏安法
電化學法是近年來發(fā)展較快的一種方法,它以經(jīng)典極譜法為依托,在此基礎(chǔ)上又衍生出示波極譜、陽極溶出伏安法等方法。電化學法的檢測限較低,測試靈敏度較高,值得推廣應用。如國標中鉛的測定方法中的第五法和鉻的測定方法的第二法均為示波極譜法。
陽極溶出伏安法是將恒電位電解富集與伏安法測定相結(jié)合的一種電化學分析方法。這種方法一次可連續(xù)測定多種金屬離子,而且靈敏度很高,能測定10-7-10-9mol/L的金屬離子。此法所用儀器比較簡單,操作方便,是一種很好的痕量分析手段。我國已經(jīng)頒布了適用于化學試劑中金屬雜質(zhì)測定的陽極溶出伏安法國家標準。
陽極溶出伏安法測定分兩個步驟。*步為“電析”,即在一個恒電位下,將被測離子電解沉積,富集在工作電極上與電極上汞生成汞齊。對給定的金屬離子來說,如果攪拌速度恒定,預電解時間固定,則m=Kc,即電積的金屬量與被測金屬離了的濃度成正比。第二步為“溶出”,即在富集結(jié)束后,一般靜止30s或60s后,在工作電極上施加一個反向電壓,由負向正掃描,將汞齊中金屬重新氧化為離子回歸溶液中,產(chǎn)生氧化電流,記錄電壓-電流曲線,即伏安曲線。曲線呈峰形,峰值電流與溶液中被測離了的濃度成正比,可作為定量分析的依據(jù),峰值電位可作為定性分析的依據(jù)。
示波極譜法又稱“單掃描極譜分析法”。一種極譜分析新力一法。它是一種快速加入電解電壓的極譜法。常在滴汞電極每一汞滴成長后期,在電解池的兩極上,迅速加入一鋸齒形脈沖電壓,在幾秒鐘內(nèi)得出一次極譜圖,為了快速記錄極譜圖,通常用示波管的熒光屏作顯示工具,因此稱為示波極譜法。其優(yōu)點:快速、靈敏。
(五)X射線熒光光譜法(XRF)
X射線熒光光譜法是利用樣品對x射線的吸收隨樣品中的成分及其多少變化而變化來定性或定量測定樣品中成分的一種方法。它具有分析迅速、樣品前處理簡單、可分析元素范圍廣、譜線簡單,光譜干擾少,試樣形態(tài)多樣性及測定時的非破壞性等特點。它不僅用于常量元素的定性和定量分析,而且也可進行微量元素的測定,其檢出限多數(shù)可達10-6。與分離、富集等手段相結(jié)合,可達10-8。測量的元素范圍包括周期表中從F-U的所有元素。多道分析儀,在幾分鐘之內(nèi)可同時測定20多種元素的含量。
x射線熒光法不僅可以分析塊狀樣品,還可對多層鍍膜的各層鍍膜分別進行成分和膜厚的分析。
當試樣受到x射線,高能粒子束,紫外光等照射時,由于高能粒子或光子與試樣原子碰撞,將原子內(nèi)層電子逐出形成空穴,使原子處于激發(fā)態(tài),這種激發(fā)態(tài)離子壽命很短,當外層電子向內(nèi)層空穴躍遷時,多余的能量即以x射線的形式放出,并在教外層產(chǎn)生新的空穴和產(chǎn)生新的x射線發(fā)射,這樣便產(chǎn)生一系列的特征x射線。特征x射線是各種元素固有的,它與元素的原子系數(shù)有關(guān)。所以只要測出了特征x射線的波長λ,就可以求出產(chǎn)生該波長的元素。即可做定性分析。在樣品組成均勻,表面光滑平整,元素間無相互激發(fā)的條件下,當用x射線(一次x射線)做激發(fā)原照射試樣,使試樣中元素產(chǎn)生特征x射線(熒光x射線)時,若元素和實驗條件一樣,熒光x射線強度與分析元素含量之間存在線性關(guān)系。根據(jù)譜線的強度可以進行定量分析
(六)電感耦合等離子體質(zhì)譜法(ICP-MS)
ICP-MS的檢出限給人極深刻的印象,其溶液的檢出限大部份為ppt級,實際的檢出限不可能優(yōu)于實驗室的清潔條件。必須指出,ICP-MS的ppt級檢出限是針對溶液中溶解物質(zhì)很少的單純?nèi)芤憾缘?,若涉及固體中濃度的檢出限,由于ICP-MS的耐鹽量較差,ICP-MS檢出限的優(yōu)點會變差多達50倍,一些普通的輕元素(如S、 Ca、 Fe 、K、 Se)在ICP-MS中有嚴重的干擾,也將惡化其檢出限。
ICP-MS由作為離子源ICP焰炬,接口裝置和作為檢測器的質(zhì)譜儀三部分組成。
ICP-MS所用電離源是感應耦合等離子體(ICP),其主體是一個由三層石英套管組成的炬管,炬管上端繞有負載線圈,三層管從里到外分別通載氣,輔助氣和冷卻氣,負載線圈由高頻電源耦合供電,產(chǎn)生垂直于線圈平面的磁場。如果通過高頻裝置使氬氣電離,則氬離子和電子在電磁場作用下又會與其它氬原子碰撞產(chǎn)生更多的離子和電子,形成渦流。強大的電流產(chǎn)生高溫,瞬間使氬氣形成溫度可達10000k的等離子焰炬。被分析樣品通常以水溶液的氣溶膠形式引入氬氣流中,然后進入由射頻能量激發(fā)的處于大氣壓下的氬等離子體中心區(qū),等離子體的高溫使樣品去溶劑化,汽化解離和電離。部分等離子體經(jīng)過不同的壓力區(qū)進入真空系統(tǒng),在真空系統(tǒng)內(nèi),正離子被拉出并按照其質(zhì)荷比分離。在負載線圈上面約10mm處,焰炬溫度大約為8000K,在這么高的溫度下,電離能低于7eV的元素*電離,電離能低于10.5ev的元素電離度大于20%。由于大部分重要的元素電離能都低于10.5eV,因此都有很高的靈敏度,少數(shù)電離能較高的元素,如C,O,Cl,Br等也能檢測,只是靈敏度較低.
掃一掃 微信咨詢
©2024 寧波普瑞思儀器科技有限公司 版權(quán)所有 備案號:浙ICP備17013722號-1 技術(shù)支持:化工儀器網(wǎng) Sitemap.xml 總訪問量:187074 管理登陸